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RESONANT FREQUENCIES OF A DIELECTRIC SPHERE 

IMMERSED IN A WARM COLLISIONAL PLASMA 

by Norman  C. Wenger 

Lewis Research Center  

SUMMARY 

The resonant modes of a dielectric sphere immersed in  a warm collisional plasma 
a r e  determined for various electron densities, electron collision frequencies, and elec- 
tron temperatures. It is found that variations in the electron density, collision fre- 
quency, and temperature cause sufficiently large changes in the resonant frequencies and 
damping factors of these modes so  that a dielectric sphere may be useful as a plasma 
diagnostic tool. 

I NTRO DU CTl ON 

In the many fields where plasmas are used, it has become increasingly important to 
determine accurately the densities, temperatures, and collision rates of the various 
species of particles that constitute the plasma. High-frequency electromagnetic waves, 
o r  microwaves, have been found to be particularly useful as diagnostic tools for  deter-  
mining the properties of the electrons. 

Wai t  (refs. 1 and 2) has recently pointed out that a spherical  region in a plasma that 
is devoid of charged particles may be useful as a plasma diagnostic tool. This spherical 
region acts as a n  electromagnetic resonator with its resonant frequencies and damping 
factors being functions of the plasma parameters.  Such a region can be achieved in  
practice by immersing a dielectric sphere, either solid or hollow, in the plasma. 

This report  presents an analysis of the resonant modes in a solid dielectric sphere 
that is immersed in  a warm collisional plasma. The resonant frequencies and damping 
factors of several  modes are computed for various electron densities, electron temper- 
atures,  and electron collision frequencies to determine the feasibility and limitations of 
using this technique as a plasma diagnostic tool. The associated problem of exciting the 
electromagnetic fields in the dielectric sphere is not discussed herein. 



BASIC EQUATIONS 

The dynamics of the plasma will be described by using the linearized hydrodynamic 
and Maxwell equations for a single fluid model of a warm plasma medium (refs. 1 to 3). 
These equations are 
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where 

electric field intensity 

magnetic field intensity 

electron fluid velocity 

perturbation electron pres  sur  e 

mass  of electron 

electronic charge 

acoustic velocity in electron gas 

equilibrium electron number density 

electric permittivity of f ree  space 

magnetic permeability of free space 

angular frequency 

effective electron collision frequency for momentum transfer 

It has been assumed that all nonstationary quantities vary with time as eiwt and that o 
is sufficiently large so that only the electron motion has to be considered. 

Equation (1) is a combination of the continuity and energy conservation equations for  
the electron gas. For  the case where the electron gas obeys the equation of state fo r  an 
ideal gas, the acoustic velocity u is given by 
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where 

k Boltzmann constant 

Te electron temperature 

y ratio of specific heats with constant pressure to constant volume of electron gas 

Equation (2) is a statement of the conservation of momentum for  the electrons, and 
equations (3) and (4) are Maxwell equations where the electric current density has been 
set equal to the electron convection current noqV. 

form: 
The basic equations can be solved more easily if they a r e  expressed in the following 

where 

V 2 p + k p p = O  2 

v x h -  - e =  
iwc E O P  

is the effective relative dielectric constant of the plasma 

(7) 
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where 

c velocity of light 

Equations (6) to (9) show that the fields in a warm plasma medium can be determined 
by first solving fo r  the magnetic and pressure fields, E and p, from equations (6) and 
(7), and then computing the electric and velocity fields, Z and V, from equations (8) 
and (9). Equations (6) to (9), of course, apply in a dielectric medium if T and p a r e  
set equal to zero and if E 

Thus, in a dielectric 
is set equal to the relative dielectric constant of the medium. 

P 

where K is the relative dielectric constant of the medium. 

MODEL AND BOUNDARY CONDITIONS 

The model to be considered, shown in figure 1, consists of a solid dielectric 
sphere, of radius a and relative dielectric constant K, that is immersed in an infinite 

Warm homogeneous 
collisional plasma 

Figure 1. - Model of dielectric sphere. 
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homogeneous warm plasma. It wil l  be assumed that the dielectric material  has no elec- 
t r ical  losses. 

for the field components at the plasma-dielectric interface r = a and at infinity. At the 
plasma-dielectric interface, the components of the electric and magnetic fields that are 
tangent to the surface r = a must be continuous. Thus, 

Before a solution for the field can proceed, boundary conditions must be specified 

- 
= h X H r  I r=a- I r=a+ 

- 
h XZr 

where Zr is the unit vector in the radial  direction. A boundary condition for  the pres-  
sure  or  velocity fields must also be specified at r = a to ensure that the fields wil l  be 
unique (ref. 4). The boundary condition that will  be used requires the normal component 
of the electron fluid velocity to vanish. Thus, 

- v .Lr (  + = 0 
r=a 

This rigidity boundary condition is obviously an approximation. 
dition has been the subject of much debate (refs. 5 to 7), since the basic equations (eqs. 
(1) to (4)) do not apply in the sheath region that exists at a plasma-dielectric interface 
and since, in many cases,  this boundary condition overconstrains the solution in the limit 
of zero electron temperature. A more realistic approach is to approximate the sheath 
region with a thin layer of f ree  space over the surface of the dielectric sphere. To sim- 
plify the analysis, however, this free-space layer is omitted. A discussion of its effect 
on the resonant frequencies is presented in the section NUMERICAL RESULTS. Since 
this analysis is concerned with resonance phenomena localized in the vicinity of the di- 
electric sphere, the proper boundary condition at infinity is to require the field to corre-  
spond to a divergent traveling o r  decaying wave as r approaches 03. 

t e rms  of the magnetic and pressure fields. This can be done by combining equations (8 ) ,  
(9), and (11) with equations (12) to (14) to give 

The validity of this con- 

It will be convenient in the following analysis to express all boundary conditions in 
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aP 1 iw0a 
- [A (h sin e )  - - - - - 
s i n e  ae q acp noq ar 

= o  
+ r=a 

FORMAL SOLUTION FOR RESONANCE EQUATIONS 

The general solution of equations (6) and (10) for the magnetic field can be shown 
(ref. 8) to consist of linear combinations of V X ('ZrrQ) and V X V X (EirrQ), where the 
generating function Q satisfies the equations 

(2 1) 
2 2 V Q + k e Q = O  r > a  

Solutions of equations (20) and (21) that a r e  appropriate for  the problem under considera- 
tion are linear combinations of the eigenfunctions Qnm where 

+nm = eimcoPr(cos 0)jn@ kor) r < a (22) 

Qnm = eimqP;(cos e)kn(iker) r > a (23) 

The functions P r ( c o s  0) are the associated Legendre polynomials, and the jn(* kor) 
and kn(iker) a r e  the spherical and modified spherical Bessel functions, respectively. 

equations : 
The spherical Bessel functions can be constructed by using the following recurrence 
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j ( x ) = - s i n x  1 
O x  

j,(x) = 1 (y s inx  - cos  x) 

and 

7r -x ko(x) = - e 
2x 

2x 

The spherical Bessel functions of the first kind must be used in the solution for  the r e -  
gion r < a since the field must be bounded at the origin. 
functions must be used for  r > a, where the branch of ke, where Re ke > 0, must be 
selected to ensure that the field corresponds to a divergent wave, in order  for  the field 
to satisfy the proper boundary condition at infinity. I€ Re ke = 0, the branch where 
Imke < 0 should be selected so that the field decays in amplitude as r approaches 00. 

combinations of the quantities V X (ZrrQnm) and V X V X (ZrrQnm) with the result  

The modified spherical Bessel 

The general solution for  the magnetic field can now be constructed by forming linear 
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P;(COS e) 
sin e jn(+ kor) 

+- eimPP"(cos n O)[jk(fi kor) + jn(G kor)]} fi ko 

+ Zi <p {-A nm eimqP"(cos n O)jn(& kor) 

P ~ ( C O S  e )  
kor) + r jn(& kor)]}) r < a (24) 

Brim imeimq +- 
sin 8 Ilk ko 

00 n I 

- h =  7, (zr% n(n + l ) e imqPr(cos  e)kn(iker) 
ker 

1 
r 

Dnm eimqP"(cos 6 )  n +- 
ke 

eimqPfm n (cos B)kn(iker) 

r 
Dnm imq + - ime 

sin e ke 
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where An" Bn" C,, and Dnm are constants to be  determined, and the prime de- 
notes differentiation with respect to the coordinate r o r  0 .  The summations with re- 
spect to m in the previous equations need only be taken from -n to n since the asso- 
ciated Legendre polynomials PE(cos  0)  are zero when Im I > n. 

The general solution of equation (7) for  the pressure  is of the form 

r > a  

where the Pm are constants to be determined. The branch of k 
o r  Imkp < 0 if Re$ = 0, must be selected to  ensure that the pressure satisfies the 
proper boundary condition at infinity. The pressure  is, of course, zero in the region 
r < a .  

Relations among the five sets of constants A,,, Bnm, Cnm, Dnm, and Pnm can 
be determined by substituting the general solutions fo r  the magnetic and pressure  fields 
into the five boundary condition equations, equations (15) to (19). After a considerable 
amount of work, the five se t s  of equations can be  expressed in the following forms: 

where Re k > 0, 
P P 

+ ($hm - 9hm)eimpP"(cos e )  = O  (27) 1 im q P;(COS e )  
n sin 8 

- 
n-0 m=-n 

- (dnm - .ipnm)eimqnPkm(cos e )  = O  (28) 1 P;(COS e )  
sin 8 

n=O m=-n 
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- (gm - gnm)eim(Pptm(cos e )  = o n I P,m(cos e )  
( d k  - w;,+ qnm limeimp 

sin e 
n=O m=-n 

1 
a 1 + - kn(ikea) 

E 

where 

r=a 

d n m  = A n m n  j (fi koa) 

'nm - - Brim 7 ko Jn * ('koa) 

r =a 

grim = Dnm - kn(ikea) 
P E 

a 
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Equations relating the quantities dnm, dhm, am, etc. can be obtained by using 
the orthogonal properties of the exponential functions and the associated Legendre poly- 
nomials. Each term in equations (27) to (31) depends on the coordinate cp only through 
the factor elmcp; therefore, these equations are also valid with the summation with re- 
spect to m eliminated because the function eimq is orthogonal to eizq if Z f m. 

can now be combined. Multiplying each term in equation (27) by imPfin(cos e)/sin 6 
and each term in equation (28) by Pim(cos e )  and then adding yield 

Equations (27) and (28), with the summation over m and the factor e imcp removed, 

Next, each term in equation (32) is multiplied by sin 8 and integrated with respect to 0 

from 0 to 'IT. Since 

- 2n(n+ 1) (n + m)! if = - 
2 n +  1 (n - m)! 

or  

= o  if n # Z  

11 



and 

A" m [ P r ( c o s  B)PfLn(cos 8)11 dB = 0 

the only way the integrated form of equation (32) can be  satisfied is for  Sgnm = $fnm 
for all values of n and m except for the special case where n = m = 0. If each te rm - - 

in equation (27) were multiplied by Pim(cos 6 )  and each te rm in equation (28) by 
P ~ ( C O S  e)  

, the result  would be $?hm = p-. Thus, equations (27) and (28) are 
i-[ s i n 8  ] 
satisfied only when Jgnm = Wnm and ghm = 9 h m .  
the same form as equations (27) and (28), it follows that $hm = '&hm - i3' nm and 
$ f n m  = grim. Equation (31) simply requires that 9'hm = n(n + l ) W n m .  
s i red relations between the quantities dnm, dAm, etc.  a r e  

Since equations (29) and (30) a r e  of 

Thus, the de- 

dnm = f3 nm (33) 

- 
9?nm - 'nm 

For the special case where n = m = 0, it can be shown that the quantities dnm, d k ,  
etc. ,  are completely arbitrary,  except for  grim and 9Am, which must be zero. 

Comparing equations (33) to (37) with the definitions for  the quantities dnm, &Am, 
etc. reveals that the equations relating the constants A,,, Bnm, Cnm, D,,, and Pnm 

divide into two sets with one set involving only Bnm and Dnm and the second set in- 
volving only Anm, Cnm, and Pnm. Combining equations (34) and (36) with the defini- 
t ionsfor  Jnm, gk, grim, and 9hm reveals that Bnm and Dnm satisfy a set of 

homogeneous equations. Thus, if the solution for  Bnm and Dnm is to be  nontrivial, 
the determinant of the coefficients of these t e rms  must vanish giving 
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j $ k  kor) + 1 jn(& koa,) a 

j n ( ~  koa) 

Similarly, using equations (33), (35), and (37) along with the definitions for  dnm, &Am, 
etc., reveals that Anm, C,, and Pnm also satisfy a set of homogeneous equations. 
Fo r  a nontrivial solution, the determinant of the coefficients of these t e r m s  must a lso 
vanish giving 

kA(iker) + - 1 kn(ikea) 
- a - 

r=a r =a 

1 kA(iker) + - kn(ikea) 
a 

E k (ikea) 
P n  

Equations (38) and (39) may be appropriately called resonance equations since they 
uniquely determine the resonant frequencies o r  natural frequencies of the sphere after 
the plasma and sphere parameters  (cop, u, v, K, and a) have been specified. Before 
presenting the solutions of these equations, it is worthwhile to consider the possible 
spatial configurations of the electromagnetic field. 

Solutions of equation (38) correspond to a field wherein Bnm # 0, Dnm # 0, and 
Am - - Cnm - - Pm = 0. A study of equations (24) and (25) reveals that this field will 
have, in general, all three components of magnetic field (i. e . ,  hr, he, and h ), but it 
can be  shown by use of equations (8) and (11) that the electric field will have only 0 
and 50 components. The pressure  is zero since Pnm = 0. Thus, solutions of equa- 
tion (38) generate a field that is transverse electric (TE) with respect to  the the radial 
coordinate. Furthermore, it can be shown that solutions with n = 0 generate a null 
field and that solutions with m = 0 generate a field with only eq, hr, and he compo- 
nents. Finally, it should be  noted that equation (38) does not contain a term that is de- 
pendent on the acoustic velocity, which in turn depends on the electron temperature. 
Thus, the resonant frequencies of the TE modes a r e  independent of the electron temper- 
ature.  

Solutions of equation (39) correspond to a field wherein A, # 0, Cnm # 0, Pnm #0, 
and B, - - D, = 0. It can b e  shown by use of equations (8), (ll), (24), and (25) that 
these solutions correspond to a field that has, in general, all three components of the 
electric field (i. e . ,  er, ee, and e ) but only the e and cp components of the magnetic 
field. These solutions are t ransverse magnetic (TM) with respect to the radial coordi- 
nate. The solutions for  n = 0 generate a null field, as in the TE case; and solutions 
with m = 0 generate a field with only e,, ee, and h components. The resonant fre- 

Cp 

50 

Cp 

- j$Gk~r) + ' a jn(fikoa) n(n + 1)w2 kn(ikpa) 

w ~ a  2 2( l - i -  ;) kA(ikpr) 
(39) P + - 

r=a Kjn ( f i  koa) P r=a 
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quencies of the TM modes are dependent on the electron temperature through the te rm 
5, which appears only in the last te rm in equation (39). A s  the electron temperature 
approaches zero, k 
approach zero. Thus, the resonance equation fo r  the TM modes in a cold plasma con- 
sists of the first two t e r m s  in equation (39). 

approaches infinity, which makes the last te rm in equation (39) 
P 

NUMERICAL RESULTS 

The resonant modes that correspond to the solutions of equations (38) and (39) will 
t h  be denoted as TEhm and TMlm, respectively. The subscript I denotes the 2 

solution of the resonance equation, with 2 = 1 being the solution with the lowest resonant 
frequency. The subscript n denotes the order  of the spherical Bessel functions, and m 
corresponds to the number of cyclic variations in the field as cp varies from 0 to 2a. 
Since the resonance equations a r e  independent of m, and m can take values f rom -n 
to n, the resonant modes will be (2n + 1)-fold degenerate. For example, the TE 1, 1, -1’ 

modes will have the same resonant frequency. 
1, 1, 1 

and TE TE1, 1 , O ’  
Numerical solutions of the resonance equations were obtained by using an IBM 7090 

computer. The first case considered was the resonant frequencies of a dielectric sphere 
in a cold, collisionless plasma; that is, both the electron collision frequency v and the 
acoustic velocity u were set equal to zero.  The resu l t s  for  this case a r e  shown in fig- 
ure  2 in the form of curves of dimensionless resonant frequency wa/c against the di- 
mensionless plasma frequency 0 a/c. The calculations were carr ied out with the rela- 

P 
tive dielectric constant of the sphere equal to 1, 9, and 100. 

The resul ts  show that, as w a/c approaches infinity, which corresponds to the 
electron density going to infinity, the resonant frequency of each mode approaches a 
limiting value. This result is expected since a cold, collisionless plasma of infinite 
electron density ac ts  as a conductor with infinite conductivity. Thus, the resonant fre- 
quencies of a dielectric sphere immersed in a plasma of infinite electron density are 
equal to those of a dielectric sphere coated with a perfectly conducting surface. These 
limiting resonant frequencies can be shown to be only functions of K and a. Some nu- 
merical  values for  these frequencies are given in table I. 

P 

At moderate electron densities, the electromagnetic field penetrates a slight dis-  
tance into the plasma. The field, however, is still totally reflected by the plasma. c 
Since the effective point of reflection is now located outside the surface r = a, the effect 
on the field is equivalent to an increase in the radius of the cavity; thus, the resonant 
frequencies are less than their  values for  infinite electron density. 

case, the resonant frequency always remains l e s s  than the plasma frequency; thus, 
There a r e  two cases  to consider as the electron density becomes small. In the first 
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(a) Dielectric constant, K = 1. 
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(b) Dielectric constant, K = 9. 
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Dimensionless plasma frequency, w alc 

(c)  Dielectric constant, K = 100. 
P 

Figure 2. - Dimensionless resonant frequency plotted against dimensionless plasma 
frequency. 



TABLE I. - RESONANT FREQUENCIES FOR 

INFINITE ELECTRON DENSITY 

Mode 

T'llm 

TM12m 

TE 11m 

TM13m 

TE 12m 

Dimensionless resonant frequency, 

fi ( W c )  

2 .74  

3.87 

4 .49  

4 . 9 7  

5.76 

TABLE E. - RESONANT FREQUENCIES WHERE 

PLASMA FREQUENCY EQUALS 

RESONANT FREQUENCY 

Dimensionless resonant frequency, 

Mode 1 & (wa/c) 

0 

3 .14  

4 .49  

5.76 

6 .28  

L 

7 * 

solutions exist down to zero electron density. This condition only occurs for  the TMlnm 
modes. Only the TMllm, TM12" and TM13m modes of this c lass  a r e  shown in fig- 
ure  2. It can be shown by using the asymptotic fo rms  of the spherical Bessel  functions 
for  small  argument along with equation (39) that the resonance curves for  the TMlnm 
modes are given by 

C c Ln(K + 1) + 1j 

when wa/c << 1. This result, with K = 1, is in agreement with the quasi-static analy- 
sis of Budden (ref. 9). 

electron density and exceeds the plasma frequency as the electron density is decreased 
from that value. This condition occurs fo r  all TE modes and for  the TMznm modes 
where 1 is greater  than 1. It can be  shown that the resonant frequencies where the 
resonant frequency is equal to the plasma frequency a r e  only functions of K and a. 
Some numerical values for  these frequencies are given in table II. 

When the resonant frequency is above the plasma frequency, energy can be radiated 
from the dielectric sphere so  that a shock-excited field in the sphere will decay with 
time. The calculation of the resonant frequencies and damping factors  for  this case will 
be deferred until the effect of electron collisions is introduced. 

w varies  from w = w to w = ~0 is independent of K for  each mode except for  the 

TM 1nm 
densities (see fig. 2, p. 15) since the resonance curves extend to w = 0. However, 

modes pass  through w = 0, it may be diffi- since the resonance curves of all TMInm 

In the second case, the resonant frequency is equal to the plasma frequency for  some 

Tables I and II show that the total percentage change in the resonant frequency as 

P P P 
modes. The TMlnm modes offer the possibility of measuring very low electron 

P 
P 
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P 
cult, in practice, to distinguish between these various modes for  small  values of w 
unless a technique can be  devised to excite only one of these modes. It should also be 
noted that the model used for  the plasma is not valid when w becomes too small. If any 
mode other than a TMlnm mode is used, the lower limit of the range of usable electron 
densities is nonzero. For example, if the TEllm mode is used, the range of electron 

densities is restricted to where fi wpa/c > 3.  14 (see table II). The lower limit of this 
range of densities can be decreased by increasing either K o r  a. The maximum value 
for  K that can presently b e  attained, consistent with low electrical  losses,  is approxi- 

tial resolution of the measurement. 

plasma frequency when the resonant and plasma frequencies are equal. Since wa/c  is 
proportional to w a/c for  the TMlnm modes when wa/c << 1 (eq. (40)), it can easily 
be shown that a 1-percent change in electron density corresponds to a 0.5-percent 
change in resonant frequency. This result  is independent of K. For the case where 
K = 1, the initial slopes of the resonance curves for  modes other than the TMInm modes 
correspond approximately to a 0.25-percent change in resonant frequency for a 1-percent 
change in electron density. These sensitivities a r e  reduced for  higher values of relative 
dielectric constant. The high sensitivity of the sphere with K = 1 is offset by the fact 
that the resonance curves for  low K approach their limiting values for  infinite electron 
density more rapidly than the curves for  higher K and thereby reduce the range of elec- 
tron densities that can be measured. 

It was pointed out in the section MODEL AND BOUNDARY CONDITIONS that the 
model under consideration does not take into account the sheath that forms  over the su r -  
face of the sphere. This sheath can be  approximated by assuming that there is a thin 
free-space layer between the dielectric and the plasma. The effect of this layer can 
easily be taken into account fo r  the case where K = 1 since the sphere and the free-  
space layer then have the same relative dielectric constants. The net effect in this case 
is to  increase the sphere radius by the thickness of the free-space layer. Since typical 
sheath thicknesses are of the order  
order  
0 . 1  percent. This increase in sphere radius produces changes in the resonant frequen- 
c ies  of less than 0. 1 percent. The effect of the sheath when the relative dielectric con- 
stant of the sphere is other than 1 cannot be treated as readily. 
pated that the effect will be  of s imilar  magnitude. 

collision frequency give rise to real values for koa and imaginary values for  kea and 

$a. 
and decays exponentially with radius outside the sphere. 

* mately 100. Increasing a increases  the size of the sphere and thereby reduces the spa- 

A study of figure 2 reveals that the resonant frequency changes most rapidly with 

P 

meter and typical sphere radii  can be of the 
meter,  the sheath effectively increases the sphere radius by approximately 

However, it is antici- 

It should be  noted that the solutions for  the case of zero electron temperature and 

Thus, the field has an oscillatory behavior in the radial direction within the sphere 

17 
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Collisions between the electrons and other particles in the plasma are a source of 
energy loss to the field. A shock-excited field in the dielectric sphere varies with time 
as eiwtYat, where the damping factor a! accounts for  the decay in the amplitude of the 
field with time. The resonant frequencies and damping factors when collisions are 
present were determined by replacing w in the resonance equations by w + ia! and then 
finding simultaneous values for  w and a! that satisfied the equations. 

Numerical results for  the case of a dielectric sphere immersed in a cold collisional 
plasma are shown for  several  modes in figures 3 and 4 in the form of curves of oa/c 
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Figure 3. - Dimensionless resonant frequency plotted against dimensionless plasma frequency. Dielectric constant, K =9. 

18 



3 a 
i 
0 

V m 

c 
R 

m -0 

VI VI a, 

c 
0 

VI c 

- 
L 

m 

E 
.- 

- 
.- 
E .- 
n 

(a) Mode, TEllm. 

? . t *  

6 8 10 0 

(b)  Mode, TElZm. 

tit 

2 4 6 8 10 
Dimensionless plasma frequency, wpak 
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and the dimensionless damping factor a / w  against w a/c for various dimensionless 
collision frequencies v /w The relative dielectric constant of the sphere was set equal 
to 9. The results show that the resonant frequency wa/c is not greatly perturbed by 
the effect of collision frequencies v /w in the range 0 to 0.1. The damping factor a!/w 

is, however, very sensitive to the value of v/w Thus, fo r  low collision rates, the P' 
electron density can be determined by measuring wa/c as in the collisionless case, and 
then the collision frequency can be  determined by measuring a / w .  In practice, the Q 
of the cavity would normally be measured and then the damping factor would be computed 
from the equation 

P 
P' 

P 

When the collision frequency v/w is in the range 0. 1 to 1, the resonant frequency 
P 

wa/c is reduced considerably from its value when v/wp = 0. Thus, for  moderate 
collision frequencies, an iterative procedure must be used to find values for  w a/c  

P and v /w that are in agreement with measured values of wa/c and a!/@. If v / w  
exceeds 1, the Q of the cavity becomes too small  for this diagnostic technique to be 
useful. 

factor, which is a strong function of v /w a t  resonant frequencies much below the P 
plasma frequency, becomes very large at frequencies above the plasma frequency and 
approaches a value which is independent of v /w This result is understandable since 
collisions represent the only energy loss  mechanism at frequencies below the plasma 
frequency. At frequencies above the plasma frequency, however, energy can be lost 
from the sphere through both collisions and radiation. It is evident from figures 4(a) 
and (b) that, at  frequencies above the plasma frequency, radiation is the dominant loss 
mechanism since the value of the damping factor is almost independent of collision f r e -  
quency. Radiation losses a r e  not important in the case of the TMlnm modes since 
their resonant frequencies are always below the plasma frequency. 

Solutions for  the case of a nonzero electron collision frequency give rise to complex 
values fo r  koa = wa/c -I- i(aa/c), kea, and k a. Thus, the field has both oscillatory and 
exponential behavior with radius within the sphere and, in most cases, is a traveling 
wave that decays extremely rapidly with radius external to the sphere. 

nant frequencies and damping factors of the various modes. As discussed previously 
the resonant frequencies and damping factors of all TE modes a r e  independent of the 
electron temperature, within the l imits imposed by the model; thus, no further consider- 
ation of the TE modes is necessary. Figure 5(a) shows a plot of oa/c against w a/c 
for the TMllm mode for  values of u/c of 0, 0.01, and 0.1. The collision frequency 

P 
P 

For  the case of the TEllm and TE12m modes (see figs. 2(a) and (b)), the damping 

P' 

P 

The final case to be considered is the effect of the electron temperature on the reso- 

P 
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Figure 5. - Dimensionless resonant frequency against dimensionless plasma frequency. 

v/wp was set equal to zero. A s  shown, the change in wa/c due to varying u/c is not 
great. The value of wa/c only changes approximately 0 .25  percent in going from 
u/c = 0 to u/c = 0.01, which is equivalent to changing the electron temperature from 0' 

to  3.7X105O K. 
A study of the resonance equation for  the TM modes (eq. (39)) reveals that the last 

term,  which is the only temperature-dependent term, contains the factor n(n + 1). 
Thus, it may be anticipated that the resonant frequencies of the modes with large n will 
have a more pronounced temperature dependence. This effect was verified from exten- 
sive numerical solutions of the resonance equation. It was also found that the tempera- 
tu re  effects could be increased by decreasing K. A typical result  is shown in figure 5(b) 
for  the TM13m mode with K = 1. The shift in resonant frequency is now approximately 
2 .7  percent in going from u/c = 0 to u/c = 0.01. 

A s  discussed in the section MODEL AND BOUNDARY CONDITIONS, the validity of 
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the computed temperature effects is dependent on the validity of the rigidity boundary 
condition given by equation (14). An experimental study of the resonant frequencies of a 
dielectric sphere in a warm plasma should give a good understanding of the accuracy of 
this boundary condition. 

CONCLUDING REMARKS 

The resonant frequencies and damping factors  of a dielectric sphere immersed in a 
warm collisional plasma were computed for  various electron densities, electron colli- 
sion frequencies, and electron temperatures. The resonant frequencies and damping 
factors  are sufficiently strong functions of the electron density and collision frequency 
so that a dielectric sphere can be  useful as a plasma diagnostic tool. The variations of 
the resonant frequencies with electron temperature are also sufficiently large to be  of 
diagnostic importance. However, the validity of these computed temperature effects is 
dependent on the accuracy of the rigidity boundary condition. 

c 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 14, 1967, 
129-01-07-05-22. 
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APPENDIX - SYMBOLS 

Im 

i 

K 

k 

ke 

kO 

kp 

me 
n 
0 

P 

radius of sphere Re 

unit vectors 

velocity of light 

r 

Te 
t 

electric field intensity 

r, 6 ,  and cp components of 
U 

- electric field intensity V 

magnetic field intensity a 

r, 8 ,  and cp components of Y 

magnetic field intensity 

imaginary part  

fi €0 

relative dielectric constant 

P 
of sphere E 

e 
Boltzmann constant 

wave number for  magnetic 
field in plasma 

free-space wave number, P O  

w/c 
v wave number f o r  pressure 

field in plasma 

mass  of electron 

equilibrium electron number cp 

density rc/ 

perturbat ion electron 
pressure  W 

W 
electronic charge P 

real part 

radial coordinate (see fig. 1) 

electron temperature 

t ime 

acoustic velocity 

electron fluid velocity 

damping factor 

ratio of specific heats with 
constant pressure to con- 
stant volume for  electron 
gas  

electric permittivity of f r ee  
space 

relative dielectric constant 
of plasma 

azimuthal coordinate (see 
fig. 1) 

magnetic permeability of 
f r ee  space 

effective electron collision 
frequency for  momentum 
transfer 

polar coordinate (see fig. 1) 

magnetic field generating 
function 

angular frequency 

plasma frequency 
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